10 key data management principles
- Create a data management strategy
- Define roles in the data management system
- Control data throughout its life cycle
- Ensure data quality
- Collect and analyze metadata
- Maximize the use of data
- Establish a data governance framework
- Protect data privacy and security
- Promote data accessibility and usability
- Invest in data literacy and education
Data is king. Organizations cannot succeed in today’s economic climate without making data-based decisions.
“As the world becomes smarter and smarter, data becomes the key to competitive advantage, meaning a company’s ability to compete will increasingly be driven by how well it can leverage data, apply analytics, and implement new technologies,” writes strategic business and technology advisor Bernard Marr.
However, transitioning to a data-first approach often overwhelms organizations. Many find themselves with more data than they know how to manage, which can be just as paralyzing as having no data at all. Organizations need a structured roadmap for collecting, analyzing, and managing data to unlock its full potential.
What are data management principles?
Data management principles are fundamental guidelines that help organizations collect, store, process, and use data efficiently and responsibly. These principles ensure that data is accurate, secure, accessible, and valuable across its lifecycle — from creation to deletion. By following them, businesses can make informed decisions, stay compliant, and drive growth.
Here are ten essential data management principles every organization should follow:
1. Create a data management strategy
One of the most important data management principles is developing a data management plan. To be effective, organizational initiatives require a strategic approach to data management. It’s essential to an organization’s success to build a solid foundation through a data strategy that provides the framework for using that data.
Some of the key components of a data strategy are
- Defining a vision and roadmap for data usage
- Identifying which data to use and when and how to use it
- Planning for storage, security, and documentation
- Ensuring data quality
Together, these elements create a blueprint for managing an organization’s data throughout a project’s or program’s life cycle.
Pro Tip
Learn more about data management on our blog — or explore free table templates to expertly manage your data with Jotform.
2. Define roles in the data management system
Good data management requires you to clearly assign roles to individuals within the data management system. Managing data is a team effort, and everyone’s role is “unique yet interdependent,” writes Brenda Reeb, senior data management consultant at IData Incorporated.
Reeb explains that the three most common roles that need to be defined are
- Data owners. Every database needs a data owner who is accountable for the data and is the authority on who gets access to it and how it is used.
- Data stewards. Data stewards are responsible for the quality and meaning of the data.
- Data custodians. Data custodians manage the archiving, recovery, maintenance, and security of the data. They don’t analyze it or use it to make decisions.
When each role is clearly understood, individuals can successfully perform their data management duties.
3. Control data throughout its life cycle
Another important data management principle is controlling data throughout its life cycle. By putting the proper policies and procedures in place, organizations can ensure that data is stored, validated, and managed until the end of a project, when it can be archived or destroyed.
Michael de Ridder, senior software engineer at YouTube, explains the six steps in data lifecycle management:
- Data creation: capturing and acquiring new data values
- Data storage: processing the data without deriving value from it and storing it so that it can’t be altered
- Data use: mapping who can use the data and how
- Data sharing: governing how data is shared
- Data archiving: storing data after it is no longer useful
- Data destruction: destroying active and archived data that’s no longer needed
Organizations will get the most value from their data by following these data life cycle phases.
Pro Tip
Discover how Jotform integrations for managing collected data can help streamline your data flow across the life cycle.
4. Ensure data quality
Assuring the quality of data is another important data management principle. Meaningful data interpretations can only happen through high-quality data, writes Clara Beck, business manager at marketing solution provider Thomson Data. For data to be considered good, she says it must be accurate, timely, non-repetitive, complete, and consistent. Data with these characteristics can lead to positive business outcomes, such as more informed decisions, higher profits, and a competitive advantage in the marketplace.
To ensure the quality of data, organizations must develop an organized data system that profiles and controls all incoming information. That system checks the quality of data against predetermined benchmarks before data is accepted. The data then needs to move through a pipeline that consistently reinforces the quality of that data — these checks and balances are the only way to ensure quality.
Bad data going in equals bad data coming out, so it’s essential to build data sets using only the highest quality data.
5. Collect and analyze metadata
Data that describes another set of data is called metadata. It gives data users a deeper understanding of a data set. It tracks all aspects of that data — such as how it has been collected and analyzed — giving insights into the content, characteristics, and uses of the data. Metadata is invaluable to a successful data program.
“The value of metadata lies in its ability to more efficiently classify and organize information, as well as to yield deeper insight into the actions taking place across your business, providing more intelligence and higher quality information to fuel big data initiatives, automation, compliance, data sharing, collaboration and more,” writes the team at information management solutions company M-Files.
Overlooking or ignoring metadata can diminish the quality and value of data, which is why companies must develop a detailed approach to managing metadata that complements the data strategy.
6. Maximize the use of data
None of the other data management principles matter if a company doesn’t maximize the use of the data it collects. Data has no value unless it’s used, so organizations need to ensure that data is accessible and usable for anyone who needs it.
Matt Kendall, content developer and strategist at Wizeline, shares different ways that companies can ensure they’re getting the most value out of their data:
- Set business goals that inform the data strategy to make sure data is actually being used, not just stored.
- Standardize data collection to create clean, user-friendly databases.
- Make data analytics a core competency of the company.
- Educate everyone from the C-suite down the ladder on how to use data meaningfully.
Collecting data for the sake of possessing it doesn’t do anybody any good. By maximizing the use of data, organizations can better harness its power and reap its benefits.
7. Establish a data governance framework
A successful data management program requires a strong data governance framework that outlines how data is accessed, managed, and used across the organization. Data can become inconsistent, misused, or noncompliant with regulations without clearly defined policies and procedures.
An effective governance model includes:
- Clear policies for access, usage, and sharing
- Assigned responsibilities for oversight and enforcement
- Processes for regulatory compliance and risk mitigation
- Monitoring tools to track adherence and update controls
Data becomes more reliable, traceable, and trustworthy when governance is consistent across all business functions.
8. Protect data privacy and security
Protecting sensitive data is not optional — it’s a foundational principle of ethical and responsible data management. Whether it’s customer information, financial data, or proprietary business assets, organizations must put strong security measures in place to reduce the risk of loss or exposure.
To maintain secure data systems, companies should:
- Encrypt data in storage and during transmission
- Define role-based access and authentication protocols
- Use secure platforms and monitor for vulnerabilities
- Perform regular audits and incident response drills
When users trust that their data is protected, organizations can build long-term credibility and meet compliance obligations.
9. Promote data accessibility and usability
Even the most well-managed data loses value if it’s hard to access or interpret. Ensuring data accessibility and usability means making data available in the right format, to the right users, at the right time — without compromising security or integrity.
To improve accessibility:
- Centralize data in intuitive, searchable systems
- Eliminate unnecessary data silos across departments
- Define access levels based on roles and responsibilities
- Train users on how to retrieve and apply data effectively
Data that’s easy to find and understand drives better decision-making and improves collaboration across teams.
10. Invest in data literacy and education
Data is only valuable when people know how to use it. That’s why investing in data literacy — the ability to read, understand, and act on data — is critical for empowering employees at every level to make informed decisions.
To strengthen data literacy across your organization:
- Offer training programs and resources tailored to roles
- Integrate data awareness into onboarding and development
- Provide context-rich dashboards and visualizations
- Encourage a culture of curiosity and evidence-based thinking
An educated workforce that understands data fundamentals will be more confident, autonomous, and impactful in their work.
These data management principles are best practices in maximizing the effectiveness of data and helping organizations achieve business goals. Without a structured approach to data management, it’s easy to become overwhelmed trying to implement a data program.
Photo by Sora Shimazaki
Send Comment: